Sergei Yakovenko's blog: on Math and Teaching

Monday, November 3, 2014

Lecture 1 (Nov. 3, 2014)

Filed under: Analytic ODE course — Sergei Yakovenko @ 6:34
Tags: , ,

The first lecture was introductory, containing the motivation for the forthcoming subjects.

The world of (real or complex) algebraic sets is tame: any question on the topological complexity admits an algorithmic solution and explicitly bounded answer.In particular, any algebraic set which consists of finitely many isolated points, admits an explicit bound for the number of these points by the product of degrees of equations defining this set (Bézout theorem). All the way around, equations involving nonalgebraic solutions to even simplest algebraic differential equations (sine/cosine), may define infinite sets (integer numbers). We will try to find out how the algebraic universe can be enlarged to include transcendental objects which still admit explicit bounds on their complexity.

It turns out that periods, integrals of rational forms over algebraic cycles, do possess such constructive finiteness, although this is far from easy to see. This finiteness is characteristic for solutions of rational Pfaffian systems with moderate singularities and special monodromy group.

Part 1: General linear systems.

A linear system locally lives on a cylinder, the product of a (complex) linear space \mathbb C^n and an open base U\subset \mathbb C^k. If \Omega=\bigl(\omega_{ij}\bigr) is an n\times n-matrix of holomorphic 1-forms on the base $U$, then a linear system defined by this matrix 1-form, is a matrix differential equation \mathrm dX=\Omega\cdot X, whose solution is a holomorphically invertible matrix function X=X(t), t\in U. If the base is one-dimensional, then \Omega=A(t)\,\mathrm dt with a holomorphic matrix function A(t), and the linear system takes the familiar shape \dot X(t)=A(t)X(t) [IY, sect. 15]

A necessary and sufficient condition for a local existence of solution is vanishing of the curvature, which amounts to the  matrix identity \mathrm d\Omega=\Omega\land\Omega (the right hand side is the matrix 2-form with the entries \sum_{\ell=1}^k \omega_{i\ell}\land\omega_{\ell j}, i,j=1,\dots,k).  See [NY, sect. 1].

Solution of a linear system is defined modulo a right multplicative constant matrix factor: \mathrm d(XC)=\Omega XC for any C\in\mathrm{GL}(n,\mathbb C), and any other solution has such form. Using this observation, any piecewise curve $latex\gamma$ on the base can be covered by small neighborhoods U_\alpha with local solutions X_\alpha in these neighborhoods, which agree on the pairwise intersections U_\alpha\cap U_\beta. If this was not the case for the initial choice of local solutions, this can be always achieved by suitably twisting them (replacing by X_\alpha C_\alpha so that X_\alpha C_\alpha=X_\beta C_\beta on the intersections). This explains how solutions can be continued analytically along any simple curve, yet after continuation along a closed path \gamma the solution may acquire a non-trivial monodromy factor.

Monday, March 3, 2008

Lecture 3 (Thu, Mar 6, 2008)

Global theory of linear systems: holomorphic vector bundles

  1. Definitions. Gluing bundles from cylindrical charts.
  2. Matrix cocycles and their equivalence.
  3. Operations on bundles vs. operations with cocycles.
  4. Example: linear bundles over \mathbb C P^1. Degree.
  5. Sections (holomorphic and meromorphic) of holomorphic bundles.
  6. Triviality of holomorphic vector bundles over \mathbb D,~\mathbb C and classification of bundles over \mathbb C P^1: Cartan and Birkhoff–Grothendieck theorems.

Recommended reading: the subject is treated in various sources with accent on analytic, geometric or algebraic side of it. You can choose your favorite textbook or one of the following expositions.

  1. O. Forster, Riemann surfaces, §§29-30 (analytic treatment).
  2. P. Griffiths & M. Harris, Principles of Algebraic Geometry, §0.5 (algebraic “neoclassical”).
  3. R. O. Wells, Differrential Analysis on Complex Manifolds, §2.

Blog at WordPress.com.