
ANALYSIS FOR HIGH SCHOOL TEACHERS

DEDEKIND’S CUTS AND REAL NUMBERS

ROTHSCHILD–CAESARIA COURSE, 2019/20

The text below is an example of the routine job required when you in-
troduce a new mathematical notion. It consists in motivations, formal
definitions and meticulous checks that what we get is free of contradic-
tions and indeed answers our wishes. We arrange them in the form of
problems and sometimes supply solutions: you are expected to be able
to supply the missing solutions.

1. Construction of real numbers: adding nonexistent
solutions to infinite systems of two-sided inequalities

In the same way as we “added” to Q non-existent solutions of polyno-
mial equations, we can add non-existent solutions to (infinite) systems
of consistent two-sided inequalities of the form l 6 x 6 r, l, r ∈ Q. To
do this, we need to reduce all such systems to some canonical form, so
that different systems could be compared and manipulated with.

Problem 1. Why finite systems cannot be used to “add” new numbers?

Solution. Any finite number of equations lk 6 rk, k = 1, . . . , n, can
be replaced by a single equivalent inequality l∗ 6 x 6 r∗, l∗ = maxk lk,
r∗ = mink rk. If l∗ > r∗, the system is inconsistent. If l∗ < r∗, it
is satisfied by at least two different rational solutions, hence cannot
be considered a “number”. If l∗ = r∗, then this is an “old” rational
number, and we don’t get anything new.

Any such (finite or infinite) system of equations is defined by two
subsets, L = {lk} and R = {Rk}. For simplicity, we will say about
“the system (L,R)”. To be self-consistent, we need the condition

L 6 R, i.e., ∀l ∈ L, r ∈ R l 6 r

(note how we abused the sign 6, using it between subsets rather than
between numbers!).

Problem 2. What happens with the system of equations if the condition
L 6 R is violated?
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In order for this system to define a “unique” number, we want the
infinite system (L,R) to be maximal, i.e., extend L and R as much
as possible without running into a contradiction. We will assume that
L ∪ R = Q. Intuitively this means that any rational number can be
compared with the “new number” defined by the infinite system and
placed either into L, or into R.

Definition 1. A cut (in full, a Dedkind cut) is a pair (L,R) of two
subsets L,R ⊆ Q, such that:

(1) L,R 6= ∅;
(2) L 6 R in the above sense;
(3) L ∪R = Q.

The set of all cuts (pairs as above) we denote by D.

Problem 3. Prove that for any cut (L,R) the intersection L ∩ R can
be either empty, or consist of at most one number q ∈ Q.

Solution. If there were two different numbers q1 < q2 ∈ L ∩ R, this
would mean that q2 ∈ R and q1 ∈ L in contradiction with the require-
ment L 6 R.

Definition 2. If L ∩R consists of a single number q ∈ Q, we call this
cut rational and identify it with the rational number q. Otherwise we
call the cut irrational.

In this way we have the embedding Q ⊆ D.

Remark 1. If L∩R = {q}, then the rational number q can be removed
from either L or R (but not from both sets, otherwise L ∪ R 6= Q)
and still be the unique solution of all inequalities of the two new
systems. This means that rational numbers admit three slightly dif-
ferent representation by cuts. This is manifested in the “equality”
0.9999999999999 · · · = 1.0000000000000 . . . between infinite decimal
fractions, see below.

Remark 2. In order to make things simpler, we will denote rational
cuts by the corresponding rational numbers and write q ∈ Q instead of
(L,R), L = {l 6 q}, R = {r > q}. For the same reason we say that all
three (formally different) cuts representing the same rational number,
are equal (instead of “equivalent”).

Problem 4. Show that Q ( D.

Solution. Let R = {r > 0 : r2 > 2}, L+ = {l > 0 : l2 6 2} and
L = {l 6 0} ∪ L+. Prove that this cut is irrational.
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Problem 5. Prove that for any two non-empty subsets L◦ 6 R◦ in
Q, there exist (eventually, more then one) cut (L,R) ∈ D, such that
L◦ ⊆ L, R◦ ⊆ R.

Solution. If there exists a rational number q such that L◦ 6 q 6 R◦,
then we can use any such number to construct the extension. Other-
wise, we can use the cut

(L,R), L = L◦ −Q+, R = R◦ + Q+.

Here Q+ = {q ∈ Q : q > 0}. Check that this is indeed a legitimate
cut!

2. Operations on cuts: arithmetic and order

Using rules of manipulation with inequalities, given two infinite sys-
tems L′ 6 x 6 R′ and L′′ 6 y 6 R′′, we can construct infinite system
of inequalities for their sum, product e.a.

Yet because of existence of negative numbers and the way how multi-
plication by negative numbers affects inequalities, we better start with
the order.

Definition 3. For two cuts (L′, R′) and (L′′, R′′) we write that (L′, R′) 6
(L′′, R′′), if L′ ⊆ L′′ and, respectively, R′ ⊇ R′′.

Note that we again abused even more the sign 6! Now it is allowed
to occur between two cuts rather than two subsets!

Problem 6. Prove that for any two cuts (L′, R′) and (L′′, R′′) we have
one of the two possibilities:

(1) (L′, R′) 6 (L′′, R′′);
(2) (L′′, R′′) 6 (L′, R′), in which case we will write (L′, R′) >

(L′′, R′′).

If both inequalities occur simultaneously, then the two cuts correspond
to the same rational number.

Problem 7. Give the definition of the strict inequality (L′, R′) <
(L′′, R′′) for cuts.

Solution. We say that (L′, R′) < (L′′, R′′), if (L′, R′) 6 (L′′, R′′) and
(L′, R′) 6= (L′′, R′′). Beware of Remark 2!

Problem 8. Show that the strict inequality introduced this way for D,
coincides with the usual strict inequality for Q ⊂ D.

Problem 9. Prove that for three irrational cuts, one and only one sign
<,=, > can be placed between them.
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Problem 10. Show that (L,R) > 0 if and only if L+ = L ∩Q+ 6= ∅.

Definition 4. For two cuts (L′, R′) and (L′′, R′′) we define by their
sum (L′, R′) + (L′′, R′′) as the cut (L′ + L′′, R′ +R′′).

Problem 11. How do you understand sign + between two subsets of
Q? Give the definition of the difference of two cuts.

Problem 12. Describe the cut −(L,R), the difference 0−(L,R). Prove
that either (L,R) or −(L,R) is always nonnegative.

Definition 5. For two nonnegative cuts (L′, R′), (L′′, R′′) > 0 we define
their product (L′, R′) · (L′′, R′′) as the cut (L′+ · L′′+, R′ ·R′′).
Problem 13. Define the product of any two cuts in the general case.

Problem 14. Define the inverse 1/(L,R) for a nonzero cut and prove
that it always exists.

Problem 15. Prove that the operations ±, ·, / introduced on D, make
it into a field.

We can now conclude that D ) Q is an extension of the field Q
which is also ordered, and the order coincides with that on Q.

It remains to see why D is “better” than Q with respect to absence
of “holes”.

3. Completeness of cuts

Our main reason to be unsatisfied with rational numbers is that there
are too many “holes” between them. In particular:

• A function continuous on a segment and changing its sign there,
may have no rational roots (assuming you know what the con-
tinuity is).
• A sequence of rational points which obviously must converge,

may have no rational limit (assuming you know what the limit
is).
• A sequence of nested non-empty segments may have empty in-

tersection.

For any of these reasons say that the system of rational numbers is
incomplete (or topologically incomplete, to be more precise).

To simplify the life, we will address only the last manifestation of
incompleteness.

Definition 6. A nested family of subsets is any infinite decreasing
sequence of non-empty subsets (of Z,Q,D, . . . ).

A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · , An 6= ∅
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Because of the nested structure, any finite intersection A1 ∩ · · · ∩An

is equal to An and is by definition non-empty. The key question is
about the infinite intersection

A∗ =
⋂

An =
∞⋂
n=1

An = {x : ∀n ∈ N x ∈ An}.

Problem 16. If An ⊆ Z and A1 is finite, then A∗ 6= ∅. Prove.

Solution. The number of elements Nn = #{x : x ∈ An} is a finite
natural (positive) number. By the nested structure,

N1 > N2 > · · · > Nn > · · · , Nn > 0.

Obviously, the only possibility is that Nn stabilizes at a certain mo-
ment, Nn = Nn+1 = · · · = N∗ > 0.

Problem 17. Let An = {k ∈ Z : k > n}. Prove that
⋂
An = ∅.

Denote by ]a, b[= {a < x < b} an open interval (the endpoints not
included) and [a, b] = {a 6 x 6 b} the closed segment including the
endpoints; this notation makes sense in Z,Q,D.

Problem 18. For the nested system of open intervals ]0, 1
n
[ the infinite

intersection is empty, the infinite intersection of closed segmets [0, 1
n
]

is non-empty. Prove it.

Problem 19. Construct a nested family of closed segments on Q with
an empty intersection.

Remark 3. In the above example the sequence of left endpoints must
converge, but has no limit in Q. The same about the sequence of right
endpoints. If you remember the definition of the limit, prove it.

Theorem 1. A nested family of closed segments in D has a non-empty
intersection in D.

Problem 20. Prove this theorem assuming that all segments have ra-
tional endpoints.

Solution. Denote by L◦ (resp, R◦) the sets of left (resp., right) end-
points. Show that L◦ 6 R◦). Show that (L◦, R◦) can be completed to
be a full cut (L,R) (in many ways). Prove that any such cut belongs
to the infinite intersection.

Problem 21. Prove the Theorem in the general case when left and
right endpoints are themselves cuts from D.
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Theorem 2. Let A 6 B two non-empty subsets of D (how do you
understand this notation?). Prove that there exists a cut α = (L,R)
which separates A and B: A 6 α 6 B.

Problem 22. Prove this theorem.

4. Conclusion

We embedded the field of rational numbers Q, which is an ordered
field, into a larger ordered field, whose elements can be described by
infinite systems of inequalities L 6 x 6 R, L,R ⊆ Q. If such a system
has a rational solution, so be it, otherwise it is interpreted as a new,
real number. The time is ripe to replace D by R, the standard notation
for real numbers.

Elements of D = R can be encoded by the infinite decimal fractions:
each such fraction is an algorithm to produce two infinite sets L◦, R◦

which can be completed to a cut in D in an obvious way. It is an easy
exercise to derive from this description the rules of manipulation with
decimal fractions.

5. Immediate gain: new operations

If A ⊂ Q is a non-empty finite set, then it always has a minimum
and a maximum, denoted by minA and maxA. This is no longer the
case if A is infinite, and can happen for two reasons:

(1) A is unbounded: if ∀r ∈ Q ∃x ∈ A : x > r, then there is no
maximum (the same about minimum),

(2) A is bounded, but the maximum is “not achieved”: if A =
{− 1

n
} ⊆ Q, there is no maximal element in A.

If A is bounded for above, A 6 r, r ∈ Q, then A has infinitely
many upper bounds, but it may happen that there is no smallest upper
bounds.

Problem 23. Give examples of a set A ⊂ Q bounded from above, which
has a smallest upper bound and which has no smallest upper bound.

This is impossible in R.

Theorem 3. If A ⊆ R is bounded from above, then there exists a
smallest upper bound r∗ ∈ R, the number such that :

(1) A 6 r∗,
(2) A 6 r for any r ∈ R implies that r∗ 6 r.

Problem 24. Prove this theorem.
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Solution. Denote by L◦ = A and R◦ be the set of all upper bounds
for A in R. Prove that L◦ 6 R◦. Prove that there is at most one real
number z ∈ R separating these two sets. Prove that z ∈ R◦.

Definition 7. The smallest upper bound is denoted by supA. In the
same way the biggest lower bound inf A is defined if A is bounded from
below.

The operations inf, sup are the best substitutes for the operations
min,max for the case of infinite subsets.
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