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Abstract. This is a position paper written in a completely non-
academic way, not claiming any originality, nor citing any refer-
ences. It will never be submitted (at least in its present form) to
any journal, yet I wish to draw attention to it of as many profes-
sionals as possible. If found meaningful, it will be endlessly edited
and rewritten.

1. SIR model and its drawbacks

The standard basic model describing the spread of an infectious dis-
ease is a system of nonlinear ODEs: the entire population is grouped
into three (or more) cohorts, S (susceptible), I (infected) and R (re-
covered). The dynamics is modelled after equations traditional for
chemical kinetics, where the speed of a reaction is proportional to the
product of concentration of reagents. In the simplest case the “infec-
tion” equation takes the form

İ = kI · S

S +R
− Ṙ, (1)

where k is a constant characterizing the intensity and the fraction
S/(S + R) is the concentration of the susceptible cohort in the entire
population and α is the recovery rate (we assume for simplicity that
there is no significant mortality so that S + I +R remains constant).

There is a number of assumptions behind (1), which may (or may
not) be true for specific diseases. The primary assumption is that the
cohort R is immune. The constant k is to a large extent a parameter
that can be controlled. For instance, if one half of S is locked down,
this is roughly equivalent to replacing k by k/2 with all implications.
Yet the effective value of this parameter is a big unknown.

The simplest versions of (1) admit an easy study. On the initial
stages of the epidemics the term S/(S +R) is very close to one, thus I
grows exponentially. This fits well the statistical data: the cumulative
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Figure 1. Cumulative number of SARS cases

number of infected people ∫ t

0

I(τ) dτ

grows exponentially at the rate somewhere between 25% and 33% (for
different countries), see Fig. 1. This growth rate can be used to esti-
mate the “unimpeded value” k for the “ignorant society” taking neither
mitigation measures like lock down, nor proactive measures (blanket
testing of suspicious people regardless of appearance of the symptoms).

As the concentration of R grows, the exponential growth of I slows
down and there is a stable equilibrium in the phase state of the model,
which corresponds to the so called herd immunity : once the concentra-
tion of R exceeds the corresponding limit, the virus cannot reproduce
effectively (the term S/(S + R) becomes small relative to the second
term).

The problem with this description (at least when looking at the
SARS data) is that the equilibrium corresponds to a very high level
of R/(S + R) of the immune population: quick estimates (depending
on the estimates on k) suggest that the immune cohort R should be
between 15% and 50% (and even higher). Although this is still an un-
known number (one has to take into account the “invisible” parts of
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I and R that passed through the cycle without exhibiting any symp-
toms), neither country seems to approach these values.

Example 1. In Italy today (Apr. 12) the cumulative number of in-
fected stays at 150,000 out of the total population of 60,000,000. Even
assuming that the invisible part is of the same size (a long shot from
accepted estimates), we get the ration 1:200=0.5%. Yet the curve of
new cases is clearly slowing down from the pure exponential growth,
indicating that the saturation is not very far away. The Korean num-
bers (10,000 and 50,000,000) give even smaller percentage while the
spread of virus is practically stopped.

This raises doubts about adequacy of the SIR model and its progeny
(taking into account mortality, isolation of the sick, . . . ). Even a more
realistic model with delay (see Appendix) cannot change the situation.

2. Very low concentration: “quantum” micromodels

It makes sense to analyze the mechanisms leading to the equation
(1) on the micro-level, where everything becomes discrete rather than
continuous.

Each virus carrier (whether sick or asymptomatic) spreads the viri-
ons (units of the live virus): originally contained in the body liquids,
they become airborne with breath, speach, coughing, etc., and can be
inhaled by a susceptible victim. The alternative route is through in-
termediate carriers (surfaces, buttons of elevators and cash dispensers,
rails e.a.), on which the virus can survive for some time and then pass
to another person on unwashed hands, food, . . . .

However, it would be wrong to think that any single contact or micro-
drop of a saliva leads to a transmission. The virologists agree (to the
best of my understanding) that each viral or bacterial disease has its
own “threshold of virality”. In plain words, how many units of live
virus (or bacteria for that sake) lead to the infection of the acceptor
with probability one half. This number can be terribly small: I read
somewhere, that just a single bacteria of the bubonic plague was able
to do the job. Yet fortunately for most other diseases there is a non-
negligible threshold, called ID50, which we will for simplicity call a
dose. As an oversimplified scenario, for deterministic models we can
assume the following dichotomy: to get infected, one has to absorb two
or more doses of virions, while one dose of virions has no impact1.

1Let us ignore for the moment, what happens with a person who got between
one and two doses: the question will become irrelevant after a proper probabilistic
modification of the model.
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Unfortunately, we have no direct way to determine the size of the
dose and how much is transmitted in a single contact. An indirect
way is to accept the universal recommendation that “15 minutes at a
distance of 2 meters or more is safe”.

From the immunological point of view this “dosed approach” means
that we have non-SARS-specific immune protection from invading viruses
which may play the same role in the area of low concentrations as the
touted “herd immunity” plays for high concentrations.

The most important question which can be answered only by the
immunological research, is whether the consecutive doses accu-
mulate. Quite obviously, two doses received within a short interval of
time should be added to each other, guaranteeing the spread of virus
within our simplified model. On the other hand, two doses received a
week apart should be considered as independent events and should not
lead to the infection. What happens with two doses received overnight?
I will assume that the life cycle of a single virion of SARS (estimated
at 30 min to one hour by different sources) means that 24 hours is long
enough period to erase all memory of past dosage.

Remark 1. The data plotted on Fig. 1 correspond to the cumulative
number of cases since the “zero day” which is placed at the moment the
first 100 cases were registered. The data related to earlier stages (can
also be retrieved from the same site) are much more erratic for a large
number of reasons, but may give some indication of where the “low
concentration threshold” could be, several hundred to single thousands
of active carriers in a local region around the entry point of the first
infected patient (Wuhan in China, Lombardy in Italy, New York in
US).

3. Some back-of-the-envelope calculations

3.1. How to estimate virality. The exponential growth of 33% a
day means, roughly, doubling of the infected people each three days.
In other words, in an unimpeded settings every SARS carrier succeeds
to infect in one day “1/3 of a victim” (with the incubation period of
about one week this would correspond to R0 = 2.3 or so).

Each person usually meets no more some 30-50 “contacts” a day, i.e.,
meeting people at a distance less than 2 m and for longer than 15 min
(absent the lock-down measures). This number can be estimated from
above by counting, how many people enter your 2-meter “personal
sphere” simultaneously and for how long you are socially active (16
hours per day?). In fact, to estimate the virality, we need a lower
bound which is probably around 10-20 daily “contacts”.
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This means that during each contact with a carrier, a susceptible
innocent victim gets about 1/30 of a dose on average. Of course, in
our model this means that in the “quantum model” nobody would get
infected after a single contact!

This false conclusion is explained by the non-even distribution of the
dosage between contacts, especially if there is more than one carrier you
meet the same day. Here the probability of large deviations necessarily
must come into play, but this is not exactly my cup of tea. However,
one thing is clear,—the spread of the disease in the micro-model is
controlled by the statistics of large deviations which is by far more
merciful towards the victims than the additive count of probabilities.

4. An informal discussion

The difference between the macro-approach (1) and the micro-approach
that I tried to sketch, can be mathematically described as follows. In
the macro-approach we add infinitely small probabilities of infinitely
rare events (a single act of transmission against the background of tens
of millions of “particles”). In the micro-approach we add integer parts
(doses, quants), which (put very roughly) corresponds to counting only
integer parts (see the above remark about large deviations if we do, as
should be done, study the honest probabilistic models).

As a result, instead of the “herd immunity” the main factor stopping
the spread of the epidemics is our background non-specific immunity
that is always “on duty” regardless of the specific immunity acquired
after getting through the sickness bed (or skipping it). This background
immunity, albeit very weak, may indeed play the key role in the area
of low and very low concentration of active virus spreaders.

If we look at today’s picture in Israel, then, apart from certain dis-
aster areas which, fortunately, can be efficiently isolated and treated
with all available resources, we have the residual daily growth rate of
new cases at the level of 1%–2%, very close to the Korean success rate.
If this exponent will be reduced by extra lock-down days to a number
well below 1%, then the concentration of active carriers will become so
small, that they will be unable (except for single exceptions that must
be watched) to spread the virus at all.

On this optimistic note I wish you health and welcome any criticism
from any side.

Appendix

There is some confusion between different parameters and indica-
tors describing the exponential growth, especially in models with delay.
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Here is an attempt to introduce some uniformity using the toy model
(discrete time, difference equation).

The (absolutely) simplest model takes the form

X(t+ T ) = R0X(t), t = 0, T, 2T, 3T, . . . , (2)

where T is the length of the full cycle, from infection to recovery, and
X(t) is the number of active carriers of virus. The value R0 (historic
notation) stands for the number of new people who are infected by one
active virus carrier during the full cycle, to compare virality of different
viruses. In a more convenient form where the time t is measured in days
(sometimes weeks), a rescaled equation is used,

X(t+ 1) = (R0/T )X(t), t = 0, 1, 2, 3, . . . , (3)

although it is morally slightly incorrect (the proper constant should be
(R0)

1/T ).
To relate this model to the statistical data, published daily, we have

to use the sum I(t) =
∑t

τ=0X(τ). If X grows exponentially with
R0 > 0, so does (up to a constant term) the cumulative number I(t).

If we want to address the delay, instead of just one variable X(t)
we need n = T new variables xk(t), k = 0, . . . , n denoting by them
the number of people who are (active) carriers carrying the virus for
exactly k days since their infection. The system of difference equations
describing this model is as follows,

xk(t+ 1) = xk−1(t), k = 0, 1, 2, . . . , n− 1,

x0(t+ 1) = a1x1(t) + · · ·+ anxn(t),

t = 1, 2, 3, 4, . . .

(4)

Here the nonnegative coefficients a1, . . . , an ≥ 0 denote the number of
new people who are infected in one day by one person carrying the
virus for k days. These numbers need not to be equal, since on the
initial stages the sick people can be less contagious than on the later
stages.

Remark 2. The same system can be used to describe the spread of the
“invisible” part of the infection, if n stands for the (average) number
of days until development of clear symptoms that allow to place the
virus carrier to isolation, thus plucking him/her from the virus spread
business.

The parameter R0 if literally translated into the delayed equation
becomes the sum,

R0 = a1 + · · ·+ an,
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and still has some meaning, though not as obvious as before if the
profile {ak}n1 is non-even.

Theorem 1 (obvious). The system (4) has an exponential solution of
the form λt · (x∗0, x∗1, . . . , x∗n) if and only if λ is the root of the charac-
teristic equation

λn = a1λ
n−1 + · · ·+ an−1λ+ an, λ ∈ C. (5)

Example 2. If all ak are zeros except for an = R0, i.e., the carrier is
contagious only on the last day before developing the symptoms (see
Remark 2), then the equation takes the form λ = an = R0 which brings
us back to square one (2).

Example 3. In the opposite case where only a1 = R0 (the rest are

zeros), the equation becomes λn = R0 and λ = R
1/n
0 , see above.

Remark 3. If we consider all equations (5) of degree n with nonnegative
coefficients ak normalized by the condition

∑n
1 ak = R0 > 1, then their

biggest positive root ρ = ρ(a, n) varies between some limits depending
on n and R0. It is not at all clear, which of these values has to be used
for the parameter k in the continuous limit (1).

Remark 4. The equation (5) besides an obvious maximal real root ρ
has lots of non-real roots (which differ by roots of unity in Exam-
ple 3). These roots correspond to short-periodic oscillations which are
the artefact of the model (unless understood otherwise).

The natural mathematical language to describe the phenomena with
delay is that of integro-differential equations with deviating argument.
However, such equations are infinite-dimensional and thus extra tech-
nical problems will appear. Perhaps, one can obtain meaningful con-
clusions passing to the limit n→∞ in the discrete system (4), but one
should take special normalizing steps and I don’t want to explore this
direction right now.
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